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Olefin Cross-Metathesis:
A Powerful Tool for
Constructing Vaccines
Composed of Multimeric
Antigens

Qian Wan, Young Shin Cho, Tristan H. Lambert,

and Samuel J. Danishefsky

Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research,
New York, New York and Department of Chemistry, Columbia University, New York,
New York, USA

The preparation of biologically pertinent glycosylamino acids from O-pentenyl glycosides
is described. The procedure involves sequential cross-metathesis reactions followed by
hydrogenation. The generality and value of this procedure have been demonstrated by
the preparation of peracetylated Gb3, GM2, and fucosyl GM1 glycosylamino acids,
which are of potentially large value in the preparation of future anticancer vaccines.

Keywords Cross-metathesis, Glycosylamino acids, O-pentenyl glycosides, Grubbs
catalyst, Isomerization

INTRODUCTION

The discovery of specific carbohydrate epitopes associated with transformed
cells[1] has raised the possibility of developing active immunotherapeutic
agents to fight human cancers, and much work has been done toward the
realization of this goal. Carbohydrate antigens, usually attached through a
linker domain to an immunogenic carrier protein, have been introduced
into a host immune system and have been investigated for their ability to
generate an immune response to circulating tumor cells and micrometastases.[2,3]
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Traditionally, one of the main drawbacks to this cell-free glycoconjugate
vaccine approach is the limited availability of purified tumor-associated carbo-
hydrate antigens to build the construct. Fortunately, the confluence of recent
advances in synthetic methodology have allowed for the preparation of
complex carbohydrate-based tumor antigens and for further evaluation of
such fully synthetic antigens at the clinical level.

The design of fully synthetic, carbohydrate-based anticancer vaccines has
been an area of ongoing and urgent interest in our laboratory. Our first
vaccines to be evaluated in the clinic were monomeric. Thus, each vaccine con-
struct was composed of a single carbohydrate antigen conjugated to a carrier
protein.[4] During the course of our research program, we came to consider
the possibility that multiple repeats, or clusters, of the carbohydrate on a
peptide backbone might elicit a more robust immune response. Second-gener-
ation vaccines were designed to take advantage of the molecular architecture of
mucins, which feature clusters of tumor-associated carbohydrate antigens, and
several such clustered vaccines were synthesized. Among those prepared and
evaluated in our laboratory were the synthetic trimeric antigen clusters of
Tn, TF, and STn, which each contained the native mucin glycopeptide architec-
ture (Fig. 1). These constructs were assembled according to our “cassette”
approach and were demonstrated to be immunogenic.[5]

A series of phase I trials,[4] which established the immunogenicity and
safety of these vaccines, did not take into consideration the degree of hetero-
geneity of carbohydrates expressed on transformed cell surfaces, even within
a particular cancer type. This heterogeneity of the type and distribution of
carbohydrate expression is dependent on the stage of cellular development.[6,7]

In contemplating the design of highly potent, broadly effective vaccines in
which several different antigens associated with a specific cancer type would
be displayed on a single peptide backbone, we realized we would need to
couple individual building blocks to create a molecular level analog of a
mucin populated cell surface.

In designing this unimolecular multivalent vaccine, we decided to utilize
non-natural amino acids as components of new peptide-linked vaccines.[8] We
surmised that such unnatural linkages might also result in an enhanced
immune response. Furthermore, we reasoned that the use of amino acids
containing long, aliphatic side chains might serve to distance the glycosides
from the peptide backbone, thus facilitating glycopeptide synthesis. With

Figure 1: Structures of clustered vaccines.
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these considerations in mind, we sought to prepare a unimolecular, trivalent
vaccine in which non-natural amino acids were used as linkers to the three
different carbohydrate domains (Tn, Lewisy, and Globo-H). Preclinical evalu-
ation of this construct has revealed promising levels of immunogenic
response to each individual carbohydrate antigen.[9] Encouraged by these
results, we sought to design and synthesize a multivalent construct that
would target a particular cancer type, namely prostate cancer. Toward this
goal, we successfully completed the total synthesis of a pentameric vaccine con-
taining five known prostate tumor-associated antigens: Tn, TF, STn, Lewisy,
and Globo-H (Fig. 2). Early preclinical studies are currently underway with
this construct, and preliminary results are encouraging.[10]

Concurrently, we hoped to revisit the concept employed in the design of the
second-generation vaccines: that of “clustering,” or installing multiple repeats
of the same antigen on a peptide backbone. In this vein, our ultimate target in
cancer vaccine preparation is a “cluster of clusters,” in which each relevant
antigen is displayed in triplicate along the peptide backbone. Hopefully, a
synergistic effect of antigen clustering and of incorporating different antigen
types onto a unimolecular construct could be realized. In increasing the com-
plexity level of our goals, we had to first verify the enhanced immunogenicity
of these individual clusters that employ non-natural amino acids as linkers.

Accumulated experience in carbohydrate synthesis has allowed us to target
more complex carbohydrate antigens than the antigens (Tn, TF, and STn) that

Figure 2: Multivalent vaccine designed for treatment of prostate cancer.
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were studied earlier in the context of trimeric cancer vaccines. We were specifi-
cally interested in fucosyl GM1 ganglioside. In 1984, Nilsson and coworkers
isolated the glycosphingolipid fucosyl GM1 and identified it as a specific
marker associated with small cell lung cancer (SCLC) cells.[11,12] Immunohisto-
chemistry studies suggested that, due to its highly restricted distribution in
normal tissues, fucosyl GM1 could be an excellent target for immune attack
against SCLC. Furthermore, at least for the moment, fucosyl GM1 has thus
far not been found on any other human cancer cell lines.[5] Upon completion
of the synthesis of fucosyl GM1,[13] preclinical studies demonstrated immuno-
genicity of our synthetic fucosyl GM1-KLH conjugate.[14] However, this antigen
had not been tested in the triplicate settings.

In designing a putative fucosyl GM1 trimeric SCLC vaccine, we elected to
extend the distance between the carbohydrate residues and the peptide
backbone with a six-carbon linker because of the steric bulkiness of fucosyl
GM1 (Fig. 3). We report herein the reevaluation of the cross-metathesis
reaction for the preparation of fucosyl GM1 glycosylamino acid, a building
block for the glycopeptide vaccine.

The broad utility of our modified procedure has been demonstrated through
the preparation of the Gb3 and GM2 glycosylamino acids. Gb3 is a glycosphin-
golipid that has been shown to be overexpressed in Burkitt lymphoma cell
lines, human ovarian cancer, human teratocarcinoma, human embryonal car-
cinoma, and other types of tumor cells.[15] Likewise, GM2 is expressed on the
cell surface of a number of human cancers, including melanoma, sarcoma,
and renal cancer.[16] Intriguingly, GM2-reactive antibodies are cytotoxic in
vitro against GM2þ human cancer cells.[17] Several clinical trials with GM2
derived from different sources are currently in progress, including large
phase III trials in high-risk melanoma patients.

RESULTS AND DISCUSSION

Our strategy for the construction of the glycopeptide vaccines requires the
fashioning of a pool of glycosylamino acids. Glycosylamino acids are important

Figure 3: Design of fucosyl GM1 trimeric vaccine.
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components of many biologically active compounds and have been prepared by
several methods.[18] In our program, the amino acid functionality has been
introduced through anomeric pentenyl groups via an ozonolysis-Horner-
Emmons olefination-asymmetric hydrogenation protocol,[7] by direct glycosyla-
tion of carbohydrate donors with hydroxynorleucine in the presence of Lewis
acid,[19,20] or by cross-metathesis reaction of O-allyl glycosides with Fmoc-L-
allylglycine benzyl ester.[21] These methods ultimately deliver unnatural glyco-
sylamino acids with a four-carbon linker between the anomeric oxygen and the
a-carbon of the amino acid (Fig. 4).

Since we proposed to elongate the linker for the construction of trimeric
fucosyl GM1 glycopeptide, we took advantage of the terminal olefin function
of fucosyl GM1 pentenyl glycoside (1) as a convenient access point to couple
this complex glycan to Fmoc-L-allylglycine benzyl ester (2) via cross-metath-
esis (Sch. 1). The powerful tool of cross-metathesis has been demonstrated
through facile conversion of simple alkene precursors into functionalized
olefins in numerous settings, including our own glycosylamino acid syn-
thesis.[21] Furthermore, by utilizing this preformed, intact b-linkage we
would obviate the difficulties surrounding the nonreliable stereochemistry
of the glycosylation. Simultaneous reduction of the side-chain olefinic
linkage and removal of the benzyl protecting group by catalytic hydrogen-
ation would afford pure N-protected glycosylamino acid primed for incorpor-
ation into polypeptide vaccines.

The first experiment was carried out with a 10 fold excess of the amino acid
(2) and 10 mol% Grubbs catalyst (3). Unlike earlier Grubbs catalysts, the more
reactive catalyst (3) allowed for the rapid and complete consumption of 1.

Figure 4: Methods used to install the amino acid functionality to carbohydrate domains.[22]
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However, we observed isomerization of the terminal olefin of 1, which resulted
in an inseparable mixture of four products (4 and 5 as mixtures of E and Z
isomers).[23–25] The reaction progress was followed by low-resolution mass
spectrometry, which clearly showed the presence of 5, although not the
relative amounts of 4 and 5 (Fig. 5). We also attempted the metathesis with
Hoveyda-Grubbs II catalyst[26] (6) and Zhan catalyst[27] (7), anticipating
short reaction time, excellent conversion, and no isomerization of the
terminal olefin. However, in each case, we obtained the same mixture of
products. Following this impasse, we studied our cross-metathesis reaction
in greater detail.

Initial studies were carried out with peracetyl b-O-pentenyl-lactose (8). No
isomerization of 8 occurred with the use of Grubbs catalyst (9) and only the
desired coupling product 10 was observed (Sch. 2, Eq. (1). However, the low con-
version of this reaction (33%) was problematic. To prevent double-bond
migration, we installed an additional methyl group on the terminal olefin of
8 by cross-metathesis with trans-2-butene to provide hexenyl glycoside 11. Sur-
prisingly, we again obtained a mixture of 10 and 12 upon cross-metathesis of 11
and 2 in the presence of catalyst 3 (Sch. 2, Eq. (2). We postulated the presence of
an undesired pathway, wherein ruthenium carbene is first generated from
homodimerization of 2 to 13. The ruthenium carbene then transforms 11 to
8, which is susceptible to isomerization to 14. Therefore, to minimize the homo-
dimerization of 2, we “capped” it with a methyl group to provide 15. In the
event, 15 and 11, each containing a methyl cap,[28] successfully underwent
cross-metathesis to generate the desired 10 in 86% yield as the exclusive

Scheme 1: Problematic cross-metathesis reaction conditions.
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coupling product. None of the undesired product, 12, was observed by low-res-
olution mass spectrometry.

Using this modified cross-metathesis reaction procedure, reactions were
carried out with several O-pentenyl glycosides of differing levels of complexity.
The product olefins, obtained as mixtures of E and Z isomers, were reduced by
catalytic hydrogenation, with concomitant deblocking of the benzyl esters.
The yields were determined for the three-step sequence starting from the
O-pentenyl glycosides (Table 1). In addition to fucosyl GM1, we were able to
gain synthetic access to the biologically interesting gangliosides, Gb3 and
GM2, as peracetylated O-pentenyl glycosides.

As indicated from the results in Table 1, the three-step sequence conveniently
allows for the preparation of glycosylamino acids in good overall yields. Although
we have not established the nature of catalyst-derived ruthenium species
responsible for the pentenyl isomerization, we have developed a simple preisome-
rization strategy (methyl cap) that effectively suppresses the undesired isomeri-
zation pathway while allowing progression of the metathesis pathway.

In conclusion, we have described a mild and efficient route to complex glyco-
sylamino acids from pentenyl glycosides by a procedure of sequential cross-
metathesis followed by hydrogenation. The resulting N-protected amino acids
are equipped for incorporation into multivalent or clustered manifestations of
carbohydrate-based cancer vaccines. Construction of the vaccines and the
results of the immunologic investigations will be reported in due course.

Figure 5: Low-resolution mass spectrum of cross-metathesis reaction crude products.
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EXPERIMENTAL

Materials and Methods
All reactions were carried out under argon with dry solvents, oven- or

flame-dried glassware, and magnetic stirring. All solvents were reagent
grade or HPLC grade. Reactions were monitored by thin layer chromatography
(TLC) using 0.25-mm E. Merck precoated silica gel plates. Flash chromato-
graphy was performed with the indicated solvents and E. Merck silica gel 60
(particle size 0.040–0.063 mm). Yields refer to chromatographically and spec-
troscopically pure compounds. Reagents were purchased from commercial sup-
pliers and used without further purification.

1H and 13C NMR spectra were recorded on a Bruker AMX-400 MHz or
a Bruker Advance DRX-500 MHz spectrometer in CDCl3 [referenced to

Scheme 2: Optimization of cross-metathesis reaction substrates.
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7.26 ppm (d) for 1H NMR and 77.0 ppm for 13C NMR] and CD3OD [referenced to
3.30 ppm (d) for 1H NMR and 49.05 ppm for 13C NMR]. Low-resolution mass
spectra (ionspray, a variation of electrospray) were acquired on a Perkin-
Elmer Sciex API 100 spectrometer. High resolution mass spectra (fast atom
bombardment, FAB) were acquired on a Micromass 70-SE-4F spectrometer.
Infrared spectra were obtained on a Perkin-Elmer 1600 FT-IR spectropho-
tometer with an NaCl plate. Optical rotations were measured with a Perkin-
Elmer 241 polarimeter in the solvent indicated.

Fmoc-L-But-2-enylglycine benzyl ester (15): (mixture of E and Z: 2.8/1):
1H NMR (400 MHz, CDCl3)TM: 7.77 (d, 2H, J ¼ 7.5 Hz), 7.62–7.50 (m, 2H),

Table 1: Convenient three-step sequence for preparation of glycosylamino acids
from pentenyl glycosides.

Glycosylamino
Acid R Glycoside

Yield (%) over
Three Steps

16 74%

17
Gb3

57%

18
GM2

51%

19 53%
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7.53–7.30 (m, 9H), 5.68–5.62 (m, 0.2H), 5.54–5.45 (m, 0.8H), 5.38–5.13 (m, 3.9
H), 4.56–4.45 (m, 0.9H), 4.39 (d, 2H, J ¼ 7.2 Hz), 4.25–4.20 (m, 1.1H),
2.70–2.46 (m, 2H), 1.63 (d, 2.2H, J ¼ 6.0 Hz), 1.57 (d, 0.8H, J ¼ 6.4 Hz). ESI-
MS: m/z 464.2 [MþNa]þ.

General Procedure
To a solution of O-pentenyl glycoside or Fmoc-L-allyglycine benzyl ester in

CH2Cl2 at 2788C was added liquid trans-2-butene, and then the Grubbs I
catalyst (25% equiv) was added. The sealed reaction vessel was heated to
408C for 3 hr. The mixture was purified by flash chromatography. A mixture
of hexenyl glycoside, 15 (10 equiv.), and Grubbs II catalyst (10%) in toluene
(carbohydrate 0.01 mmol, toluene 0.2 mL) under N2 flow was heated at 408C
for 3 to 6 hr. Chromatography afforded the mixture of E and Z olefins. The cat-
alytic hydrogenation and deprotection of the benzyl group were realized in
presence of 10% Pt/C in MeOH/H2O (15/1) under H2 from 1 day to 5 days.

Peracetylated b-O-pentenyl-Gb3:[30] [a]D
24 ¼ þ 60.08 (c 1.0, CHCl3); IR (cm21)

g: 2941, 1749, 1370, 1231, 1052. 1H NMR (400 MHz, CDCl3) d: 5.80–5.72 (m, 1H),
5.58 (s, 1H), 5.38 (dd, 1H, J ¼ 2.8, 11.0 Hz), 5.21–5.15 (m, 2H), 5.09 (dd, 1H,
J ¼ 8.0, 10.4 Hz), 5.01–4.85 (m, 4H), 4.72 (d, 1H, J ¼ 10.7 Hz), 4.51–4.40
(m, 5H), 4.18–4.07 (m, 4H), 4.00 (s, 1H), 3.86–3.73 (m, 3H), 3.63–3.59
(m, 1H), 3.50–3.44 (m, 1H), 2.16–1.97 (m, 32 H), 1.71–1.60 (m, 2H). 13C NMR
(100 MHz, CDCl3) d: 171.06, 170.87, 170.85, 170.84, 170.83, 170.82, 170.47,
170.08, 170.06, 169.91, 138.21, 115.45, 101.50, 100.94, 100.02, 76.93, 73.56,
73.21, 72.89, 72.22, 72.20, 69.68, 69.38, 69.24, 68.28, 68.04, 67.53, 67.47, 62.74,
61.72, 60.66, 30.22, 28.98, 21.32, 21.25, 21.12, 21.11, 21.10, 21.08, 21.03, 20.98,
20.90, 20.79. ESI-MS: m/z 1015.7 [MþNa]þ.

Peracetylated b-O-pentenyl-GM2:[31] [a]D
23 ¼ 2 21.88 (c 2.18, CHCl3); IR

(cm21) g: 3384, 2957, 1747, 1684, 1665, 1540, 1435, 1370, 1230, 1167, 1129,
and 1046. 1H NMR (400 MHz, CDCl3) d: 5.97 (m, 1 H), 5.73–5.62 (m, 2H),
5.54 (d, 1H, J ¼ 10.0 Hz), 5.45 (m, 1H), 5.28 (dd, 1H, J ¼ 1.7, 9.5 Hz), 5.25
(d, 1H, J ¼ 2.9 Hz), 5.07 (t, 1H, J ¼ 9.3 Hz), 5.02 (d, 1H, J ¼ 8.2 Hz), 4.88
(m, 3H), 4.76 (m, 2H), 4.53 (d, 1H, J ¼ 7.8 Hz), 4.36 (m, 2H), 4.27 (dd, 1H,
1.9, 12.3 Hz), 4.13 (m, 2H), 4.01 (m, 4H), 3.89 (m, 2H), 3.77 (m, 4H), 3.74
(s, 3H), 3.51 (m, 2H), 3.43–3.30 (m, 3H), 2.70 (dd, 1H, J ¼ 3.5, 12.5 Hz),
2.20 (s, 1H), 2.11 (s, 3H), 2.03 (s, 6H), 1.99 (s, 3H), 1.98 (s, 6H), 1.97 (s, 3H),
1.96 (s, 3H), 1.94 (s, 3H), 1.92 (s, 3H), 1.91 (s, 3H), 1.89 (s, 3H), 1.86 (s, 3H),
1.75 (s, 3H), 1.70–1.49 (m, 3H). 13C NMR (100 MHz, CDCl3) d: 171.16,
170.51, 170.33, 170.30, 170.21, 170.19, 170.11, 170.06, 169.95, 169.82, 169.43,
169.38, 169.28, 168.00, 165.60, 137.57, 114.80, 100.31, 100.26, 98.97, 97.25,
75.77, 73.24, 73.10, 72.61, 72.40, 71.90, 71.55, 71.48, 69.88, 69.35, 69.22,
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68.98, 68.50, 67.42, 66.73, 66.62, 63.09, 62.08, 61.28, 52.58, 48.88, 36.97, 30.52,
29.57, 28.33, 23.21, 22.82, 21.17, 20.62, 20.53, 20.47, 20.41, 20.35, 19.53, 18.71.
ESI-MS: m/z 1445.5 [MþNa]þ.

Peracetylated b-O-pentenyl fucosyl GM1:[32] [a]D
24 ¼2 40.48 (c 1.0, CHCl3);

IR (cm21) g: 3382, 2969, 1747, 1690, 1371, 1232, 1166, 1131, 1058. 1H NMR
(400 MHz, CDCl3) d: 7.16 (d, 1H, J ¼ 6.1 Hz), 5.80–5.67 (m, 1H), 5.60 (ddd,
1H, J ¼ 2.5, 6.0, 9.0 Hz), 5.44 (d, 1H, J ¼ 3.5 Hz), 5.39–5.28 (m, 4H), 5.24–
5.10 (m, 4H), 5.05–4.88 (m, 6H), 4.82 (dd, 1H, J ¼ 8.1, 9.4 Hz), 4.75 (ddd, 1H,
J ¼ 4.2, 10.5, 12.4 Hz), 4.67 (d, 1H, J ¼ 7.8 Hz), 4.51 (d, 1H, J ¼ 7.8 Hz), 4.67
(dd, 1H, J ¼ 6.4, 13.1 Hz), 4.39 (d, 1H, J ¼ 7.9 Hz), 4.22–3.70 (m, 18 H), 3.79
(s, 3H), 3.57 (m. 2H), 3.50–3.40 (m, 2H), 3.02 (m, 1H), 2.82 (dd, 1H, J ¼ 4.3,
13.0 Hz), 2.19 (s, 3H), 2.17–2.07 (m, 12H), 2.06–1.9 (m, 48H), 1.81 (s, 3H),
1.7–1.54 (m, 3H), 1.21 (s, 3H), 1.11 (d, 3H, J ¼ 6.5 Hz). 13C NMR (100 MHz,
CDCl3) d: 174.13, 171.58, 171.49, 170.98, 170.93, 170.91, 170.84, 170.80,
170.73, 170.71, 170.56, 170.18, 170.16, 170.05, 169.94, 169.74, 168.71, 138.26,
115.45, 102.59, 100.99, 100.94, 99.27, 97.80, 94.89, 77.64, 76.21, 74.24, 74.10,
73.89, 73.80, 73.36, 72.98, 72.53, 72.38, 72.29, 71.84, 71.46, 70.88, 70.70,
70.31, 69.90, 69.67, 67.49, 65.32, 63.81, 62.97, 61.10, 56.00, 54.21, 53.05,
49.81, 30.26, 29.69, 29.00, 24.01, 23.55, 21.85, 21.28, 21.52, 21.22, 21.19,
21.17, 21.07, 20.97, 20.96, 20.88, 16.44. ESI-MS: m/z 1963.9 [MþNa]þ.

Peracetylated lactose glycosylamino acid (16):[33] [a]D
24 ¼ 2 108 (c 1.0,

CHCl3); IR (cm21) g: 2936, 1752, 1369, 1228, 1053. 1H NMR (400 MHz,
MeOD) d: 7.80 (d, 2H, J ¼ 7.5 Hz), 7.70–7.55 (m, 2H), 7.38 (t, 2H,
J ¼ 7.4 Hz), 7.30 (t, 2H, J ¼ 7.4 Hz), 5.34 (d, 1H, J ¼ 3.3 Hz), 5.16 (t, 1H,
J ¼ 9.3 Hz), 5.09 (dd, 1H, J ¼ 3.4, 10.3 Hz), 5.01 (dd, 1H, J ¼ 7.8, 10.3 Hz),
4.80 (dd, 1H, J ¼ 8.0, 9.5 Hz), 4.66 (d, 1H, J ¼ 7.9 Hz), 4.53 (d, 1H,
J ¼ 8.0 Hz), 4.65 (dd, 1H, J ¼ 1.5, 12.0 Hz), 4.40–4.25 (m, 2H), 4.21 (t, 1H,
J ¼ 6.7 Hz), 4.15–4.05 (m, 5H), 3.90–3.56 (m, 3H), 3.46 (td, J ¼ 9.7, 6.5 Hz),
2.12 (s, 3H), 2.08 (s, 3H), 2.04 (s, 3H), 2.03 (s, 6H), 1.92 (s, 3H), 1.86 (s, 3H),
1.60–1.45 (br, 2H), 1.4–1.27 (br, 6H). 13C NMR (100 MHz, MeOD) d: 172.77,
172.41, 172.33, 172.15, 171.82, 171.69, 171.55, 145.80, 145.60, 143.00, 129.23,
128.61, 126.70, 121.38, 102.47, 102.07, 78.09, 74.90, 74.27, 73.62, 72.99,
72.15, 71.30, 71.10, 70.99, 68.99, 68.25, 64.01, 62.68, 56.45, 34.50, 32.50,
32.08, 30.89, 30.31, 29.94, 27.25, 21.54, 21.17, 21.13, 21.00, 21.88. ESI-MS:
m/z 1016.6 [MþH]þ.

Peracetylated Gb3 glycosylamino acid (17): [a]D
24 ¼ þ 32.48 (c 0.5, CHCl3);

IR (cm21) g: 2936, 1753, 1370, 1232, 1052. 1H NMR (400 MHz, MeOD) d: 7.70
(d, 2H, J ¼ 7.5 Hz), 7.60–7.50 (m, 2H), 7.29 (t, 2H, J ¼ 7.4 Hz), 7.21 (t, 2H,
J ¼ 7.4 Hz), 5.43 (m, 1 H), 5.29 (dd, 1H, J ¼ 3.3, 11.0 Hz), 5.09 (dd, 1H,
J ¼ 3.5, 11.0 Hz), 5.07 (t, 1H, J ¼ 9.3 Hz), 5.00 (dd, 1H, J ¼ 7.8, 10.7 Hz), 4.94
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(d, 1H, J ¼ 3.5 Hz), 4.85 (dd, 1H, J ¼ 2.6, 10.7 Hz), 4.72 (t, 1H, J ¼ 9.7 Hz), 4.57
(d, 1H, J ¼ 7.8 Hz), 4.46 (d, 1H, J ¼ 8.1 Hz), 4.43–4.38 (m, 2H), 4.35 (dd, 1H,
J ¼ 7.2, 11.3 Hz), 4.32–4.26 (m, 2H), 4.15–3.92 (m, 7H), 3.88 (t, 1H,
J ¼ 6.4 Hz), 3.74–3.67 (m, 2H), 3.63–3.58 (m, 1H), 3.54–3.25 (m, 1H), 3.43–
3.35 (m, 1H), 2.03 (s, 3H), 1.99 (s, 3H), 1.98 (s, 3H), 1.97 (s, 3H), 1.95 (s, 6H),
1.94 (s, 3H), 1.92 (s, 3H), 1.89 (s, 3H), 1.86 (s, 3H), 1.80–1.67 (br, 1H), 1.65–
1.14 (br, 3H), 1.32–1.28 (br, 7H). 13C NMR (125 MHz, MeOD) d: 172.78,
172.72, 172.50, 172.35, 171.79, 171.72, 171.58, 145.81, 145.65, 143.02, 129.24,
128.62, 126.69, 121.38, 102.49, 102.15, 101.16, 79.22, 78.03, 74.85, 74.47,
74.33, 73.88, 73.57, 71.92, 71.30, 71.00, 70.26, 69.71, 69.30, 68.87, 68.26,
64.16, 64.05, 62.19, 56.46, 33.40, 32.79, 32.51, 31.18, 30.89, 30.28, 29.95,
27.33, 27.27, 21.63, 21.43, 21.17, 21.11, 20.97. ESI-MS: m/z 1326.5 [MþNa]þ.

Peracetylated GM2 glycosylamino acid (18): [a]D
27 ¼ 2 19.388 (c 1.26,

CHCl3); IR (cm21) g: 3364, 2939, 1747 1681, 1556, 1538, 1454, 1434, 1371,
1229, 1169, 1126, 1046. 1H NMR (500 MHz, MeOD) d: 7.78 (d, 2H,
J ¼ 7.5 Hz), 7.66–7.58 (m, 2H), 7.37 (t, 2H, J ¼ 7.4 Hz), 7.29 (t, 2H,
J ¼ 7.4 Hz), 5.59 (t, 1H, J ¼ 3.5 Hz), 5.57 (m, 1H), 5.38 (d, 1H, J ¼ 10.1 Hz),
5.35 (d, 1H, J ¼ 3.1 Hz), 5.11 (t, 1H, J ¼ 9.3 Hz), 5.01 (d, 1H, J ¼ 9.3 Hz), 4.97
(dd, 1H, J ¼ 8.1, 10.0 Hz), 4.78 (t, 1H, J ¼ 8.8 Hz), 4.65 (d, 1H, J ¼ 7.9 Hz),
4.50 (m, 2H), 4.39–4.24 (m, 5H), 4.20 (t, 1H, J ¼ 6.7 Hz), 4.13 (dd, 2H,
J ¼ 6.3, 11.3 Hz), 4.06 (m, 3H), 3.97 (m, 3H), 3.90 (s, 3H), 3.84 (t, 1H,
J ¼ 9.4 Hz), 3.77 (m, 1H), 3.71 (t, 1H, J ¼ 5.8 Hz), 3.64–3.56 (m, 3H), 3.44
(m, 1H), 2.84 (dd, 1H, J ¼ 4.3, 12.7 Hz), 2.24 (s, 3H), 2.15 (s, 3H), 2.12
(s, 3H), 2.08 (s, 3H), 2.06 (s, 6H), 2.04 (s, 3H), 2.02 (s, 3H), 2.00 (s, 3H), 1.99
(s, 3H), 1.965 (s, 3H), 1.95 (s, 3H), 1.94 (s, 3H), 1.82 (s, 3H), 1.81 (m, 1H),
1.63 (t, 2H, J ¼ 12.4 Hz), 1.50 (m, 2H), 1.27 (m, 6H). 13C NMR (125 MHz,
MeOD) d: 174.06, 173.54, 172.35, 172.34, 172.29, 172.12, 172.08, 171.93,
171.70, 171.64, 171.50, 171.31, 171.07, 169.72, 158.55, 145.41, 145.24, 142.59,
128.87, 128.24, 126.32, 126.28, 121.02, 102.15, 101.64, 101.18, 98.84, 77.43,
74.87, 74.82, 74.36, 73.77, 73.26, 72.95, 72.64, 71.56, 71.08, 70.90, 70.66,
70.59, 69.74, 68.76, 68.30, 67.83, 64.80, 63.61, 63.52, 63.00, 53.88, 53.29,
49.94, 48.46, 38.46, 33.20, 30.50, 30.01, 26.92, 26.88, 23.32, 22.78, 22.12,
21.71, 21.62, 21.16, 21.03, 20.94, 20.90, 20.84, 20.76, 20.67, 20.63, 20.59,
18.02. ESI-MS: m/z 1734.8 [MþH]þ.

Peracetylated Fucosyl GM1 glycosylamino acid (19): [a]D
24 ¼ 2 30.28 (c

1.0, CHCl3); IR (cm21) g: 2931, 1747, 1370, 1231, 1047. 1H NMR (500 MHz,
MeOD) d: 7.79 (d, 2H, J ¼ 7.5 Hz), 7.66 (m, 2H), 7.38 (t, 2H, J ¼ 7.4 Hz), 7.30
(t, 2H, J ¼ 7.4 Hz), 5.61 (m, 1H), 5.48 (dd, 2H, J ¼ 3.1, 9,5 Hz), 5.39 (dd, 1 H,
J ¼ 2.3, 9.7 Hz), 5.25 (m, 3H), 5.14–5.09 (m, 2H), 5.06 (dd, 2H, J ¼ 3.5,
10.0 Hz), 4.94 (d, 1H, J ¼ 8.3 Hz), 4.91 (dd, 1H, J ¼ 3.9, 11.0 Hz), 4.84–4.77
(m, 1H), 4.66 (d, 1H, J ¼ 7.6 Hz), 4.65 (d, 1H, J ¼ 7.9 Hz), 4.56 (d, 1H,
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J ¼ 8.0 Hz), 4.52 (m, 1H), 4.47 (d, 1H, J ¼ 10.4 Hz), 4.40–4.30 (m, 4H), 4.29–
4.16 (m, 4H), 4.15–3.83 (m, 11H), 3.89 (s, 3H), 3.82–3.76 (m, 1H), 3.73–3.65
(m, 3H), 3.56 (m, 1H), 3.51–3.44 (m, 1H), 3.13 (dd, 1H, J ¼ 8.3, 11.1 Hz), 2.85
(dd, 1H, J ¼ 4.7, 13.0 Hz), 2.27 (s, 3H), 2.17 (s, 3H), 2.15 (s, 3H), 2.14 (s, 3H),
2.12 (s, 6H), 2.11 (s, 3H), 2.07 (s, 3H), 2.06 (s, 3H), 2.05 (s, 3H), 2.02 (s, 6H),
2.018 (s, 3H), 2.015 (s, 3H), 2.0 (s, 3H), 1.98 (s, 2H), 1.97 (s, 3H), 1.95 (s, 3H),
1.94 (s, 3H), 1.81 (s, 3H), 1.70–1.50 (br, 6H), 1.40–1.25 (br, 4H), 1.17 (d, 3H,
J ¼ 6.5 Hz). 13C NMR (125 MHz, MeOD) d: 175.90, 173.97, 172.82, 172.77,
172.74, 172.64, 172.59, 172.46, 172.43, 172.07, 171.87, 171.77, 171.50, 170.10,
145.82, 145.66, 143.02, 129.24, 128.62, 126.70, 121.37, 102.93, 102.84, 102.03,
101.22, 99.08, 97.71, 78.15, 75.40, 73.66, 71.30, 71.00, 69.24, 68.24, 66.55,
65.41, 64.22, 63.02, 56.47, 54.21, 32.51, 30.29, 29.95, 27.26, 21.63, 21.40,
21.30, 21.18, 21.14, 21.05, 21.01, 20.96, 20.92, 16.67. ESI-MS: m/z 2252.9
[MþH]þ.
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